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1.       Ijitro_ducj^ion 

In this paper we discuss the test of fit that a random sample comes 

from the extreme value distribution 

(l) F(.x) = exp[-exp{-(x-£)/6}] , -°° < x < °° . 

This is the most important of the three distributions which arise as the 

asymptotic distribution of the largest value, suitably normalized, of a 

sample taken from any of a wide class of distributions (see e.g. Johnson 

and Kotz (1970), p, 2rf2),  It arises also in applied research; 

the present work was motivated by a question .arising in biology. Suppose 

the sample is in ascending order x. < x^ < x_ < a»* < x     , and the null 
* 1—2—3—    — n 

hypothesis is formally stated as H. :  the sample comes from distribution 

(.1)» with possibly one or both of the location and scale parameters £ , 

0 unknown. Following Stephens (197^, 1976) we distinguish four situa- 

tions : 

Case 0:  Both £ and 0 are known«, so that F(x)  is completely 

specified. 

Case 1:  0 known, K    to be estimated. 

Case 2: E,    known, 0 to be estimated. 

Case__3_: . ? ,  9 both unknown, and to be estimated. 

We suppose the parameters will be estimated by maximum likelihood 

from the given example; the estimates, for Case 3, are given by the equa- 

tions (Johnson and Kotz (1970), p. 283): 

(2) § = EjXj/n - [Ex    exp(-x /0)]/[S    exp(-xJ/6)] 



and 

^   A 
(3) K =  »6 ln[S exp(-Xj/e)/n] . 

Equation (2) is solved iteratively, and then (3) can be solved.  In Case 1, 

«*• /^ 
0 is known; then £ is given by (3) with 0 replacing 6 .  In Case 2, 

/\ 
E,    is known; suppose then that y = x. - £ ;  0  is given by solving 

00 6 = {£ y - Ly exp(-y /6)}/n . 
(j  «J        «J  J J 

The Goodness-of-Fit Tests 

The tests discussed below are based on EDF statistics, measuring the 

discrepancy between the empirical distribution function and the theoretical 

distribution (l); in Cases 1, 2S and 3, the m.l. estimates are inserted 

for unknown parameters in (l).  The statistics discussed are those usually 

2. 2       2 
called W , U  and A .  Asymptotic theory for the statistics will be 

given in Section 3; this is based on work of Anderson and Darling (1952), 

for Case 0, and on papers by Darling (1955) > Sukhatme (1972), Durbin (1973) 

and Stephens (1976) for situations where parameters must be estimated. 

The reader is referred to these papers for the theory behind the methods 

which follow; in particular, we follow closely the general lines of 

Stephens (1976).  In that paper, for example, will be found the defini- 

2. 2 2 
tions of w, U  and A  ; here we shall give only the practical steps 

in making a test of H. .  These are: 
U 

(a) Calculate z. = F(x.) where F(x)  is as given in (l) with the 

appropriate m.l. estimates inserted for unknown parameters in Cases 1, 2, 

or 3.  Recall that the x.  are supposed in ascending order, giving z. 

also in ascending order.  Let z be the mean of the z.   . 
i 



(b) Calculate the test statistic desired. 

K2 • X {\ - ^ir'2 + 

u 

,_.,      12n 

= W - n(z - ^-) 2' 

A2 = -[E.(2i-l){ln 2. + ln(l-z _ .)}]/n - n 
i i       n+1—l 

(c) Refer to Table 1, first calculating the modified statistic and 

then comparing these with the (upper tail) points given in the table, 

for the appropriate case.  For example, if a sample of size 10, Case 3, 

gave W =  0.119  9 
the modified VT is, say, W* =0.119(1-0.2/J) = 0.1265; 

this is just significant at the <y%    level. 

3.  Asymptotic Theory of the Tests 

The following is a summary, taken from the papers referenced above, 

of the steps needed to calculate the asymptotic distributions of 

2 
or A  in the various cases. 

W2, U2 

For Case 0, when F(x)  is completely specified, it is well-known 

that  z = F(x) gives a random variable  z which is uniformly distributed 

between 0 and 1 ;  further, if z. = F(x.) ,  i = l,2,...,n ,  and if 

F (z)  is the EDF of the z.  sample, then y (z) = /n{F   (z) - z} tends 
n l       '       n        n 

asymptotically to a Gaussian process y(z) ,  0 < z < 1 , with 

E(y(z)) = 0 for all z , and 

(5)        E(y(s)y(t)) = p0(s,t) = s - st , 0< s<t < 1 

where E is the expectation operator, 



Unknown parameters.  Suppose now that the (continuous) distribution 

under test is F(x)  (not necessarily (l)), with density f(x) ,  con- 

taining k parameters  0 , 8?3.. ., 8, ; these are unknown and will be 

estimated by maximum likelihood.  Suppose Z is the matrix with entries 

Z..  given by 

(£,) 7      ~    v I 3 "3-n f (x) | . _ , 0 

and let Z be its inverse. Further, define s = F(x) ,  and 

3s 
(7) g±(s) = c 

i 

Let u(s) be a k-vector whose i-th component is g.(s) .  Then, under 

appropriate regularity- conditions (see e.g. Durbin (1973)), y (z) now 

tends to a Gaussian process y(z) with mean zero as before, and with 

covariance 

(8) p(.s,t) = p0Ca,t) - u'(.s)Zu(t) 

1 2 
y (z) dz and, again under regularity con- 

1 2 
y (z) dz . 

The statistic  w  is 
0 

ditions, its asymptotic distribution will be that of 
0 

Anderson and Darling (.1952) and Darling (1955) have shown how another 

Gaussian process may be constructed, with mean 0 and given covariance 

function p(s,t) and the distribution (the word asymptotic will be 

dropped) of w  is calculated from the new process.  We must first solve 

(9) fCx) = A 
rl 

p(x9y) f(y) dy 
0 



for eigenfunctions f.Cy)  and corresponding eigenvectors A. .  If D(X) 

is the Fredholm determinant associated -with (9), the characteristic func- 

tion of the distribution of "to  will be {D(2it)}""~' v    The distribution 

of w  will then be the same as that of 

00 

(10) s = I  v A. 
1=1 

2 
where the w.  are independent X  variables.  The cumulants of the 

X X 

distribution are 

(11) K. = 2J~1((i-l)!   P.(B,S) ds 

where p (s,t) = p(s,t) ,  and, for j >_ 2 ,  p.(s,t)  is defined by 
X J 

p 1(s,u) p(u,t) du . p.Cs,t) = 
J 0 

The cumulants can also be found from the representation (lO) 

(12) K = 2J~1(j-l)l I     (1M.)J . 
«J i=l 

2     2 
Statistics U and A .  These statistics are respectively functionals 

1 /o 
of y (z)_ y (z) and of y (z) w(z) where w(z) = {z(l-z)}" '  ;Y (z)-Y (Z) 

XX       -      XX XX Xx n 

these processes tend asymptotically to Gaussian processes with covariances 

p(s9t) , which, for a given case, can be found from the corresponding 

covariance for w \    then Equation (9) must again be solved, and the sum 

2      2 
S in (10), with the new X.   , will give the distribution of U  or A 

The characteristic function comes from the Fredholm determinant of (9) as 

before. 



Thus the practical problem is to find p(s,t) for different cases, 

then to solve (9) for X.   ,  and then to use (12) to approximate the 

distribution (assuming, as is nearly always so except for Case 0, that 

the characteristic function cannot be inverted). 

h.      Asymptotic Results for the Extreme Value Distribution 

The above results apply to any suitably regular distribution. For 

the distribution (l) considered here, we find, after some algebra, 

(13) 

2 
where Y = .57712 is Euler's constant and c  is 

r"(3) + r"(i) - 2r"(2) - 1 = u2/6 + (Y-i)
2 = 1.82368 , 

giving c = 1.350^37 ;  r"(x) is the second derivative of the Gamma 

function F(x) .  The asymptotic variances of £  (Case l) and 9  (Case 2), 

—1       2 —1 
when 0=1,  are then n   and  (en)   , respectively.  The functions 

g(s) , with subscript to indicate the case, are 

,   \       s In s 
g1(s) = —-Q—    , 

(   1 - s ^-n  s [-In(-In s)] Sp v s; — -       -      , 

and these give covariance functions p (s,t)  for Case j, j = 1,2 
J 

ilh) Pj(s.t) = P0(s,t) - <j> (s) <j> (t) 



with 

and 

<}>, (s) = s In s 

4>2(s) = s In s [-in(-In s)]/l.350^37 

2    2 -1 
For Case 3 we first define a.   , 0"p , and p by writing Z  = E 

as 

2 
/ c 

(15) E = 

ai     pai02 

_2 .pa^   a2 

The large-sample variances of £ and 6 , in Case 3, are then (7.,/n and 

2 
ap/n respectively, and the correlation "between them is p . Inversion of 

Z gives (for 9 = l), ff^ = 1.10867 , o\  = 0.60793 and p = 0.313 . 

Hote that the variances are different from those in Cases 1 and 2 "because 

of the presence of correlation. 

Since £ is positive definite, it can be written £ = BB1 where B 

is upper triangular; an example given by Sukhatme (1972) is 

(16) 

If we define v(s) = B'u(s) , with two components <j>-,(s) , ^?(s) , the 

covariance for Case 3 becomes, from (8), 

(17)      P3(s,t) = p0(s,t) - ^(s) ^(t) - I|>2(B) t|>2(t) . 



Another possible matrix decomposition is E = CC* where 

C = 

pa2   (l-p2)1/2 o2 

If there were no asymptotic correlation between £ and 9 in Case 

3,  p_(s,t) would take the form of (17), "but with <(>.(•) replacing 

*±(0 • 

5.  Calculation of Weights 

With covariance p (s,t) known for Case j, the next problem is to 

solve (9) for the weights A. . This is done as follows. 

Let 0 < X < A < X    ... be the weights and f (x) the associated 

normalized eigenfunctions, for Case 0.  (For w ,    these are 

2  2 
A.   = 1/TT i      and    f. (x) = /2 sin rrix .)    Set    D  (A) = n  (A-A.)   .    Expand 

§  (x) = £ a.f.(x) , so that a. = (j) (x) f.(x) dx ; similarly let 

ft» 

b. 
i 

<|>2(x)  f. (x) dx  .     Let 

S  (A) = 1 + A I 
ct 

2 a. 
l 

A-A. 

sb(x) = x + x I dr ; 

S
ab^> ' ^ 07    ' 



In general, the X.  of Cases 1 and 2 are then given by setting the 

Fredholm determinant to zero; this implies, for Case 1, solving 

DQ(X) S (X) = 0 , and for Case 2, DQ(X) S (X) = 0 . For Case 3, 

suppose 41-] (x) , ^2(
x) replace <J>,(x) , <j>2(x) in the definitions of 

a.  and b.  above, and define 

T(X) = SCX) B. (X) - {S , (X)}2 ; 
ah      ab 

solutions for Case 3 are then given by D (X) T(X) = 0 . 

Weights for w . For w,    the X. of Case 0, which we call the 

standard weights, each occur only once. In, say, Case 1, if a value i 

exists so that a. = 0 , then X = X. would be a solution of 
l i 

D (X) S (X) = 0 ; otherwise  (X-X. ) in Dn(X) cancels (X-X ) in the 
u    a •   x      o i 

term in S (X) and X = X.  is not a solution. For distribution (l) 
a x 

the a.  are never zero for w , so the X.  are then given only by 

S (X) = 0 . Similarly, for Case 2 we solve S, (X) = 0 , and for Case 3, 

T(X) = 0 (see Stephens (l°76) for examples where a. = 0). 

2     2       2 
Weights for A and U .  For A  a similar situation exists; the 

functions f.(x) for Case 0 are P (2x-l) , where P,(t) are Ferrer 

associated Legendre functions, and the standard X. = i(i+l) . No coeffi- 

cient a.  or b.  is zero, and solutions for X.  for Cases 1, 2, and 3 
ii l ' 

are given by S (X) = 0 , S, (X) = 0 , and T(X) = 0 , respectively. 

For U  the discussion is more complicated.  The roots X.  of 

2 2 
DQ(X) = 0 are double roots, given by X. = UTT i  , and the corresponding 

eigenfunctions are f. (x) =/2 sin 2irix and f^x) = /2 cos 2iTix. Suppose a 



and a* , t>.  and b? are the coefficients obtained using f.(x)  and 
l '  l       l &  l 

f*(x) respectively.  Then S (X) "becomes 
1 a. 

a2 a*2 

sa(A)=1 + Mf I=Ä7x7 + IT^TT)   • 
and 

S     ,X)   . A [ I Ä-   : 
'ab 1-X/X. 

i i 
?L 

a.b. 

-X/X. 
x x 

S (X)  is defined similarly to S (X) .  In Case 1, although no coefficient 
D ct 

a. , a.   ,    b.  or b.  is zero, one factor X - X.  in D„(X) cancels 
ill      l i      0 

denominators in S (X) , but the other factor remains, so X = X.  is a 
a i 

solution of D (X) S (X) = 0 ;  other solutions are given directly by 
U      3, 

S (X) = 0 .  Similarly, for Cases 2 and 3, the standard weights occur once 

in addition to those given respectively by S, (X) = 0 and T(.X) = 0 . 

As a check on calculations, the weights for Case 3, for all three 

statistics, were found using the <j>-,(s) and <j>„(s) given by both trans- 

formations B and C of Section 2; these, of course, give different coefficients 

a.,a.3b.,b. but the same final distribution for S in (lO). 
liii • 

Direct Calculation of Means and Variances 

The means and variances of the various distributions can be found 

directly from (ll). For example, for the mean y  for Case j, (ll) gives 

(18) 
rl 

P1(s,s)ds = pQ(s,s)ds (j)1(s)ds = yQ - ^(sjds 

The mean drops from its Case 0 value  (y = 1/6) by the last integral 

10 



in (l8), which we will call A ; this can sometimes be directly cal- 

culated.  For example, for w  Case 1, using integration by parts, 

A. cj^Cs) ds = s2ln2s ds = .07^07 

-2 
Similarly, for Case 29 let b be  (l.350^37)"'' ;  then 

fl 
A2 = (j) (s) ds = b 3 In s{ln(-ln s)} ds 

Let s = e   ,  then 

A2 = b 
-3z 21   2  . 

e  z In z dz 
0 

Integrals of this type can easily be evaluated by use of appropriate 

substitutions and the identities 

r(m) 

r!U) 

r"(m) 

-y m-1 
e " y   dy , 

-y m-1 _ 
e " y   In y dy 

~y m-1 . 2  , 
e " y   In y dy 

For Ap above 3 substitute u = 3z s 

A   _b_ 
2  27 

e~ u (in u - In 3) du 

b{r"(3) - 2 In 3 r«(3) + In 3 T(3)}/27 

0.01750 . 

11 



For W~ Case 3, using the notation of Section kt  after Equation (l6), 

we have 

A = ^ (s) ds + i>n(s)  ds 

v1 (s) v(s) ds 

u' (s) E u(s) ds 

a1A1 + 2Pa1a2A12 + a^ 

where we define 

A 
12 ^(s) <j>2(.s) ds 

Let c be 1/1.350^37 ; then 

A. 12 

1 ft» 

s In s{-In(-In s)}ds = c 
0 

e~3zz2 In z dz = 0.0096UU5 
0 

Thus finally A_ = 0.1083 .  The three means for Cases 1, 2, 3 are then 

y = 0.0926 ,  u2 = O.1U92 ,  y = 0.0581+ . For U2 the calculations 

are on similar lines but are somewhat more complicated; the results are 

yQ = 1/12 ,  y = 0.0718 , y2 = 0.0683 , y = 0.0559 . For A2 the 

integrals are intractable and have been calculated numerically to give 

yQ = 1 , y1 = 0.5959 , y2 = O.8619 , y3 = 0.3869 . 

In principle, variances could be calculated from (ll), as was done 

in Stephens (1976) for the case of the normal distribution, but here the 

integrals were too complicated.  It is important, however, to have the 

exact means, as (12) usually converges too slowly to give them correctly. 

12 



7. Calculation of Percentage Points 

"When the X.  are found, and the exact means, the percentage points 

of S in (lO) can be found by a modification of Imhof's method, given 

by Durbin and Knott (1972).  Alternatively, the first four cumulants can 

be found from (12) and Pearson curves fitted to the data.  Imhof's method 

can be made very accurate for a finite sum in (lO), though it is expen- 

sive in computer time; in adapting it for an infinite sum an element of 

approximation is introduced.  Thus both techniques give approximate 

percentage points.  The Imhof method gives more accurate points in the 

lower tail (see Solomon and Stephens (1975) for a fuller discussion), but 

this is not, of course, the tail which would generally be used in goodness 

of fit work.  Both techniques will depend on the accuracy of the A. , 

in turn dependent on the accuracy of the numerical integrations in a. 

and b. . 
l 

Both methods were used here to find the percentage points given in Table 1; 

they were in agreement to the accuracy given.  Points for Case 0 are included to 

show how much the points drop in the other cases (and to shpw, therefore, how 

important it is to use the correct points). 

8. Monte Carlo Results for Finite n 

Monte Carlo studies were made to determine the percentage points of 

the various statistics., for sample sizes n = 10, 20, and 50 ;    5,000 

samples were used for each -case.  Previous experience had suggested 

(Stephens (197M) that convergence to the asymptotic points would be 

rapid, and a plot of percentage points against l/n proved this to be so. 

13 



The Monte Carlo points were used to calculate the modified forms given 

in Table 1; for further details on how these are founds see Stephens 

(1970, 1976). 

Comment.  It is interesting that the asymptotic process in Case 1 

above has exactly the same covariance  (p(s,t)  in (l^)) as in a test for 

the exponential distribution F(x) = 1 - exp(-x/6) , with 0 unknown; 

see Case h  of Stephens (.1976).  The asymptotic distributions of all the 

EDF statistics are therefore the same in Case 1 above as in the exponen- 

tial test. 
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